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ABSTRACT

The penetration of radiation into plane semi-infinite slabs of
material has been calculated numerically by means of the time-dependent
transport theory (Boltzmann eqﬁation) and the approximete “diffusion
theory." Quantitative results are given for the case of a non-
scattering material with constant absorption cross section, and for
the general case of a scattering material (boron) with absorption co-
efficient a function of energy. Results show that the diffusion theory
calculation gives an energy penetration which is too large, but that
in a time during which the diffusion wave penetrates to a depth corres-
ponding to a few mean free paths, the rate of energy penetration cal-
culated using the diffusion approximation approaches the value cal-

culated using the exact theory.
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The diffusion of photons through matter is described by the time-

dependent Boltzmann transport equation:

o1
‘5% + (u")'.V)Iy = o;i(l-e'e) [Jy(T) - I,J

(o Nl

- o, I, + 08(5,53 )1, (& ")dw' (1)

In this equation €& = hu/‘I‘; @ is a unit vector in the direction of
motion of the beam of photons of energy hV passing through matter at

temperature T. The quantity I,, is the monochromatic radiation inten-
sity, i.e., I,, (ﬁ‘,t,v,a'))dwdl)/hv is the density of photons at (R,t)
moving in directions within dw about W with energies between hy and

h(y +d» ). The energy density of the radiation field at (ﬁ,t) is

o0

- E.=|dw| I,(,wa.
(o]

The first term on the right-hand side of eq (1) represents the contri-
bution to the beam by emission minus absorption. O’a( V,T) = cross

sectipn/cm3 for absorption of photons by the matter at (ﬁ,t). In the
case of local thermodynamic equilibrium assumed here, the emission is

described by the Planck function,

3
ch
J,(T) ==
v c3 eé-l

The presence of the e-a factor in eq (1) is due to the effect of in-
duced emission. The last two terms in the right-hand member of (1)

describe the change in the beam due to scattering of photons by the

o UNCLASSIFIED-
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matter at (R,t).

For the complete determination of the spatial and time variation
of I (R,t, ), ) and T(R,t), one other equation (together with appro-
priate boundary conditions) is needed. The required equation expresses
the overall conservation of energy in the system matter plus radiation,

and may be written

aEm(T) aEr

5% + =g V‘F=0 (2)

where 'F" is the net flux of radiation. The latter quantity is a vector

-

[~ <4
whose component in a direction £ 1is given by cfdwf I, @)cos(@, L)av.
o

Diffusion Approximation.

Specialized to the case of a semi-infinite plane slab(with axial

symmetry), the transport equation (1) is written,

oD 5 m1) -oy1, + |o@, 3, @' (3)

Here M= cos © (see figure). In the diffusion approximation the distri-

bution function is considered to be nearly isotropic:

o o UNCLASSIFIED
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Iy (2,6, = 8 (2,8) + a(z,8) s . (4)

In the case of Thomson scattering by electrons at rest, which is
applicable here, the scattering kernel is given by
— ! _ 1 2 2, !
o*s(w,w ) = 5 Nr [1 + cos (w,w ﬂ
The scattering integral is to be evaluated when I,, is of the form

given by (4) above. Taking coordinates as in the figure, the direc-

tion of

1
W can be represented by (sin ©' cos #', sin @' sin P', cos ©'). Be-
—_ ) —
cause of the symmetry, &« can be taken in the (x,z)-plane: W =

]
(sin @, 0, cos ©); also I, (W ) = I,(Q'). The scattering integral is
V 'V
then given by

UNCLASSIFIED
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1 2 2—-‘—5'
--2-1‘Iro \(Iy (o) [1-0- cos (w,w )] dw

Nr 2 p2w e 2
= g g Iv(O')[1+(cosc cos®'+sin® sin®' cos ? ) ]sinO' dae’ dty'
o Jo
TNroe 2 l 1 t 2 l ] 2 ] L
-2 ) GA\ nehe + G| T

1 -1

where 4= cos ©. Evaluation of this expression with Iy(};.') given by

(4) gives % 1rNr02ao for the scattering integral. Since O, = %ero2

(total cross-section), we have

o (B, B, (B )aw = ora (5)

w
in this approximation.

Substitution of the expression (4) for I,, in the transport equa-
tion (3), taking account of (5) and neglecting the time derivative in

(3), gives the following relation:

da 2 ;al £
j&-a?g + " = =o*a(l-e' )[JH(T) - (a°+al/4)]

- ors(aé+a1/4.) + oga,-

Since this relation must hold for all values of s+, the coefficients of

corresponding powers of M can be equated. This gives

T UNCLASSIFIED -
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Oa

_5_..z° = - [%(1-{8) + crs] a;
Thus, the form of Iy in the diffusion theory is
' 23,
LY =3 - Ay (6)

where

1 -&
X;' = O‘a(l-e )+ o,-

The radistion energy density becomes

l oo
N
E.= 27rf I,drdy = lnr[ J, dY = aT (7)
0 u=1 o]
where a = Stefan~Boltzmann constant.
The net flux of radiation at (z »t) is a vector in the direction of

the z-axis with magnitude

1 oo

F =2mc }41),(/*)@1&/4.
-1 o

Using (6), the diffusion approximation expression for the flux is ob-

tained:

2J,, (1) oT
Fe-S3c ) Ay—Qpgr— & "5 |

_ UNCLASSIFIED




APPROVED FOR PUBLI C RELEASE

UNCLASSIFIED

Introducing the "Rosseland mean" defined by

Y
§Y oo
Y »(;AJ oT 2 m aJﬂ
AT) =§*-?§3; =-3 | woT o
— aV & o]
o dT
the flux becomes simply
F=- S3i .532- (ar) (8)

in the diffusion approximation.
When the approximate relations (7), (8) for E. and F are used in
the energy balance equation (2), the time-dependent diffusion equation

is obtained:

-’;?E[Em('.t') + aTh] = 7?; [-%E‘- —3—5 (a-Th)] . (9)

The above derivation indicates the nature of the approximations inherent

in the diffusion theory.

Comparison of Exact and Diffusion Theory by Numerical Solutions; Boundary

Conditions.
In order to gain some quantitative insight into the difference be-
tween the exact theory and diffusion approximation treatments of the
radiation transport process, a simple problem involving penetration of

radiation into a semi-infinite slab of cold incompressible material was

UNCLASSIFIED
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devised and the solutions corresponding to the exact and diffusion ap=-
proximation treatments were obtained (numerically). It is assumed that
the surface of the slab is illuminated by isotropic radiation with a
Planck frequency distribution corresponding to conmstant temperature,
To. The temperature dependence of the energy of the material in the

slab (z > 0) is assumed to be of the form
Em(T) = bT

where b is a constant. In the first problem the material is assumed to
be non-scattering with A = constant independent of JV,T. The trans-

port equation (3) can then be integrated over d¥ to give

F b gl (- v) o

o0

4/(z,t,/u.) = 27!’\( I,dv.

(o]

where

The radiation energy is given by

1

E, = ([J'd/- (11)
-1

and the energy relation (2) becomes
1

1
b%%:-% (,bd/‘t-c_ga;gljd#d/..
~1 -

10
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By integrating (10) over di the last result can be written,

1l
b -3% -3 Pau - at® (12)
-1
The solution of (10) and (12) is then to be obtained subject to the

boundery conditions

™(z,t) = 0
(P( ) for z > O when t = O, (13)
z,tyu =0
d}(z,t,/u) =%a’1‘oh at z =0 for 0< M <1.

The solution of the penetration problem in the diffusion theory

approximation is obtained by integrating the diffusion equation

o

by _cA 2%
g-E(bT+aT)—33—— —

5 (a7*) (14)

Z

subject to a boundery condition prescribed at the surface z = 0 and the

initial condition

™z,0) = O, (z > 0). (15)

In the diffusion theory treatment it is evidently not possible to
specify the value of the intensity ¢Iat the boundary of the slab for
0« <l as was done in the transport theory formulation. An alterna-
tive procedure that is frequently employed in this type of flow problem

is to specify T at the boundary:

0,t) = T, = const. (162)

NEIDERTH] UNCLASSIFIED
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However, this is only an approximate description; the transport theory
solution shows that the temperature of the surface of the slab rises
continuously and approaches To as the material of the slab heats up.

A description which accords closer agreement with the transport

theory formulation is to prescribe the value of the forward current

at the boundary:
1
1k _
Ftao\ APQelae =g caT, at z = 0.

o]

By (6) this is equivalent to writing

ar*
2-

For the purpose of comparing the diffusion theory treatment with

wid|

2z N

L
QaTh] - aTo
=0 2 (16b)

the exact solution, numerical solutions were obtained using both kinds
of approximate boundary conditions*.

It will be noted that if z and ct are measured in units of A , the
problem here described involves only one parameter: 7 = aTo3/b. Thus,
if b ==3 o¢tb and To3 -—d oLT°3, the corresponding solution of (10),

(12) is '
T oey o1

Yaos oL 4/3¢

¥
For a discussion of boundary conditions for the steady-state diffusion
problem, see Morse and Feshbach, Methods of Theoretical Physics, pp.
185-188 (1953).

UNCLASSIFIED
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These scaling relations also hold for eq (14).

Numerical Solutions.

*
The "method of discrete ordinates" was employed for the numerical
gsolution of the transport problem. In this method the distribution

function is calculated at each of a finite set of directions; thus

‘/ji: ¢(j‘i) i=1, 2} 3) seey N

The transport equation (10) is replaced by a set of n equations:

1 3¢1+% oY 1 Lot .y (10°)
c ot i gz A\2 i
and the integral over directions appearing in (12) is replaced by a

numerical quadrature so that (12) becomes

» o7 _1[ & i '

z-ﬁ"i(é%%-ﬂ) (12')
where the coefficients ay depend upon the quadrature formula selected.
For numerical solution described here the interval - 1K M <1 was split

into two Gaussian quadrature intervals, - 1 £ &< O and 0% /u < 1l, so

that the angles are given by the zeroes of
P22(2jﬁ-il) = 0,

where P,.,is the Legendre polynomial of order 24, and the ai's are given

22
by one-half the corresponding usual Gaussian coefficients. The advantage

¥
Cf. Kourganoff, Basic Methods in Transfer Problems, Chapter III (1952).

UNCLASSIFIED
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of splitting the interval of lntegration into two Gaussian intervals
lies in the fact that this gives more directions in the region near
M = O where ¢( M) is changing most rapidly*. Thus in the first
approximation there are four directions, _Mm. =+ -é- + -é- ([—g——) .

Using the notation
Vi = Plopy) My 20
lpi" = W(-/u'i)

and employing the indexes n,Jj, corresponding to the time and space
divisions of the mesh respectively, the system of finite difference

] ¥
equations corresponding to egs. (10 ),(12') may be written ,

n+l, Jj n,J n,J n, j-1
. ¢i+ " l‘Ufl.+ + Lpi+ - ‘Pi-o- 131 a(Tlt-)n"j - lpn,d
- cAt /li Az ;l 2 i+

b Tn+l}tj - Tn,J 1 n)J n,'j h n)J
ot X Z = d)1+ 2 Rt

i

— =

*This "double-Gaussian" method was first used by J. B..Sykes (Monthly
Notices of Royal Astronomical Society 111, 377 (1951)).

*%
This method of centering the space differences was suggested by

M. Rosenbluth. When centered this way, the equations are integrated

in the direction of motion of the photon beam in each case. A stability
analysis indicated that the above system is stable for cAt < As, where
ss = |oz/m|, provided Az << A .

" UNCLASSIFIED
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This system was solved in the first approximation (4 directions) sub-
Ject to the boundary conditions (13) on a high-speed digital computer.
The value 1/11.5 was used for %z- and % ;s several problems were run
corresponding to different values of the parameter 7: a.T°3/b.

As a test problem, 250 cycles were run for '7= 1.690 in the second
order approximation (8 directions). The results indicate that the
energy which penetrates the cold material in a time corresponding to
200 cycles is given within 0.1% by the first-order approximation solu-
tion. 100 cycles were run using intervals one-helf the value 'quoted
above; the resulting energy penetration did not differ from that cale-
culated using the larger intervals by more than 1%.

The solution of the diffusion equation (1%) subject to the boundary
conditions (15) and (16e) was obtained by making use of the "similarity"
transfomtion*

(z,t) = T(§ )

where S = z(ct)'l/e.
If 2 and ct are measured in units of A, eq (14) reduces under this

transformation to an ordinary differential equation:

d‘?V av
(V-l-l) 0, (18)
ag? "3 ; ) 2hlm)gge
where V(S) = l&a’l‘ . The boundary conditions (16a) become

V(0) = V, = const.
V(eo) = 0 | (19)

*Following Marshak, LA-230.

o UNCLASSIFIED
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The radiation wave represented by the solution of (18) has a sharp
"front" at some value g = § o The solution may be represented as an

expension in powers of (go- S):
v(g)=Al(§o-§)+A2(‘§o-§)2+ [osgsfo]
V(S) =0 [§0\< S]

The coefficients are determined by substituting this expension into (18),

This gives

=2
=355
-9 9 2
Ay =15 (2 5o - 1)
The quantity fo is determined by the first of the boundary conditions
(19). The procedure employed for solving (18) was as follows: A first
guess for fo is made by using two terms of the expansion for V( 5 ).
' 9

This value of _§ o, and the corresponding slope V (§o) = -3 f o, are used
to start a numerical integration of (18). The integration is continued
back to 5 = 0 and the value V(0) obtained is compared with V,. The
guessed value for §o is improved and the process is repeated until the
desired value V(0) = V, is closely approximated.

In the case of the boundary condition represented by (16b) it is
not possible to obtain a similarity transformation of the kind described

above. In this case the solution of the difference system corresponding

to (14) over a two-dimensional mesh was carrled out numerically.

-~ UNCLASSIFIED.
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General Case: Absorption and Scattering Coefficients Functions of Energy.

The penetration of thermal radiation into boron was calculated by
neans of the transport theory and the diffusion gpproximation. This was
done for a boundary temperature To = T kv. Values of the absorption
and scattering coefficients for boron at .7 kv and density .4Ok4 gm/cm3

which were used are shown in Fig. 12. (That is, O

a and(jg were taken

to be independent of Eggperature.) The value .1653 was taken for
a$°3/b. The integration of the transport equation (3) was carried out
using four directions and ten frequency groups, the latter correspond-
ing to the values h//.T =1, 2, 3, ..., 10. The frequency integrals
were epproximated by trapezoidal integration. (Trapezoidal evaluation

[~ -4
of S' J;,dx’ at T = .T using the ten frequency values given above is

o ——
. better than 1%). The Rosseland mean A (T) for use in the diffusion

theory calculation was calculated and fitted; it is shown in Fig. 13.
Boundary condition (16b) was employed in the diffusion theory calcula-
tion.

Results.

Constant Mean Free Path Case. The total energy penetration to time t
t

is given by F(O,t)dt. Plots of this quantity vs ct/;k for several

values of the Sarameter '7 = aTos/b are shown in Figs. 1-3, 8. Curves
representing the diffusion approximation and exact solutions are shown.
The rate of energy penetration, the net flux across the boundary, is shown
in Fig. 4 for a typical case. The shapes of the temperature, radiation

energy density, and flux waves are shown in Figs. 5-7, and 10. The

UNCLASSIFIED
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quantities are plotted against the similarity wvarisble g = zt-l/ 2:
in these coordinates the solutibn of the diffusion equation subject

to boundary condition (16a) is represented by a single curve. The

families of curves representing the transport theory solution are

shown for comparison. The diffusion theory results shown in Figs.

1-7 were calculated using boundary condition (16e) whereas Figs. 8-10
refer to diffusion theory results obtained using condition (16b). Thus,
Fig. 8 is to be compared with Figs. 1 and 4; likewise, Fig. 10 with

Fig. 5. Fig. 9 shows the increase of the temperature of the surface

of the slab with time. Fig. 11 shows the angular distribution of the
radiation intensity at various penetration depths as given by the trans-

port equation calculation in a typical case.

General Case (Variable Mean Free Path). The results of the calculations
of the penetration of radiation into boron are shown in Figs. 14-20,
which are similar to those described above for the constant mean free
path case. It will be noticed that in Fig. 14 the net flux vs. time
curve shows a Jump at ct = 120, At this point the calculation was
re-zoned in order to avoid exceeding the storage capacity of the com-
puting machine; the space interval size Az was increased from +5 cn

to 1 em. In the difference scheme employed the net flux at the boundary
is given by (employing the notation of egs (17)) cé ai( x;;o - :.’_1)}41.
It is apparent that except in the case in which Japi_/éz at the
boundary is zero, the net flux as calculated by the foregoing expres-

sion will show a small jump when the size of the space zones is changed.

UNCLASSIFIED
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The jump is an effect of the non-infinitesimal value of Az; the
moagnitude of the jump is a measure of the error inherent in the cal-

culation, and approaches zero asAz-~9 O.

SUMMARY

The results of the calculations show that in each case the energy
penetration given by the diffusion approximation is too large. Accord-
ing to the diffusion theory, the rate of energy penetration, the net
flux at the surface of the slab, is initially infinite in the case of
boundary condition (16a) (constant temperature at surface); in the
case of boundary condition (16b) (forward current at surface specified)
the diffusion calculation gives an initial flux equal to twice that
given by the exact theory. In either case, in a time during which the
diffusion wave penetrates to a depth corresponding to a few mean free
paths, the raﬁe of energy penetration calculated using the diffusion
approximation aﬁproaches the value given by the transport equation cal-
culation within the limits of accuracy of the calculations. Thus,
after the diffusion wave has penetrated a few mean free paths of slab
material, the diffusion theory gives the correct energy penetration
except for a constant difference. It will be noted, from Fig. 5 in
particular, that at advanced times the transport theory temperature

wave steepens and, except for a small precursor, approaches the shape

of the diffusion wave.

9 UNCLASSIFIED
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Fig. 1. Energy penetrationg F(0,t)dt vs ct/}\ for constant mean free path case.

0
(aT°3/b = 1.690.) Unit for ngt is 2.0237r\aT°l"/14. The boundary temperature
was prescribed for the diffusion theory case. The penetration of the diffusion
wave is given by zo/P\ = 1.060 (ct/A)l/a.
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Fig. 2. Energy penetration g F(0,t)dt vs ct/A for constant mean free path case.

o
(e.To3/'b = ,16532.) Unit for ngt is 2.023TA afro“/u. (Boundary temperature
prescribed for diffusion case.) Penetration of the diffusion wave is given

by 20 /A = .3973 (ct/A)M2,
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Energy penetration g P(0,t)dt vs ct/\ for constant mean free path case.
)

(aT 03/b = .016827). Unit for \Fdt is 20.311A aToh/h. (Boundary temperature
prescribed for diffusion wave.) The penetration of the diffusion wave is given
by zo/r\ = ,1300 (c‘c/k)l/a.
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Fig. 4. Net flux through boundary F(0,t) vs ct/A for constant mean free path case.

(aT 03/'0 = 1.690). Unit for F is .1557ca‘1'°“'/h. (Boundary temperature prescribed
for diffusion case.)
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Fig. 5. Temperature wave form in diffusion and transport theory (constant mean free path
case). (a.To3/b = 1.690). Unit for z and ct is A. §o = zo(ct)']‘/2 = 1.060.
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Fig. 8. Energy penetration and net flux through boundary (constant mean free path case).
(aTo3/b = 1.690)., Forward current across boundary prescribed for diffusion case.

hy. 4
Unit for det is a'l‘o A; unit for F is caT | /2. (Compare Fig. 1, Fig. 4.)
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Fig. 9. Surface temperature of slab vs time (constant mean free path case). Forward current
across boundary prescribed for diffusion theory. (a.T°3/b = 1.690).
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Fig. 10. Shape of diffusion theory temperature wave at selected times (constant mean free
path case; forward current prescribed at boundary). (aT°3/b = 1.690). Compare Fig. 5.
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Fig. 14. Energy penetration and net flux through boundary of boron slab (c.g.s. units x 1016).
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Fig. 15. Profile of temperature wave in boron slab. ct = 75 cm. (Em = .028426 x 1016T).
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Fig. 17.

Profile of temperature wave in boron slab. ct = 225 cnm.
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Fig. 18. Profile of radiation energy density wave in boron.

ct = 75 cm.
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